1) A 50.0 ml soap bubble is blown in a $27.0^{\circ} \mathrm{C}$ room. It drifts out an open window and lands in a snow bank at $-3.0^{\circ} \mathrm{C}$. What is its new volume?
2) A balloon was inflated to a volume of 5.0 liters at a temperature of $7.0^{\circ} \mathrm{C}$. It landed in an oven and was heated to $147^{\circ} \mathrm{C}$. What is its new volume?
3) During the day at $27^{\circ} \mathrm{C}$ a cylinder with a sliding top contains 20.0 liters of air. At night it only holds 19 liters. What is the temperature at night? Give the answer in Kelvin and ${ }^{\circ} \mathrm{C}$?
4) A 113 L sample of Helium at $27^{\circ} \mathrm{C}$ is cooled to $-78^{\circ} \mathrm{C}$. Calculate the new volume of the Helium.
5) On all aerosol cans you see a warning that tells you to keep the can away from heat because of the danger of explosion. What is the potential volume of the gas contained in a 500.0 mL can at $25^{\circ} \mathrm{C}$ if it were heated to $54^{\circ} \mathrm{C}$. In other words if the can could expand to allow the gas to take up a greater volume, what would be the new volume of the gas when heated as previously described?
6) A 0.20 ml CO 2 bubble in a cake batter is at $27^{\circ} \mathrm{C}$. In the oven it gets heated to $177^{\circ} \mathrm{C}$. What is its new volume?

If the cake had $5,000.0$ bubbles, by how many ml . would the cake rise when it was cooked.

What common ingredient was used to create the original CO_{2} bubble?
7) A 500.0 ml . Glass filled with air is placed into water up-side-down while at $7.0^{\circ} \mathrm{C}$. The water is heated to $77^{\circ} \mathrm{C}$. How much air bubbles out from under the glass?
8) At one point in history people could measure temperature by looking at the volume of a sample of gas. Suppose a sample in a gas thermometer has a volume of 135 mL at $11.0^{\circ} \mathrm{C}$. Indicate what temperature would correspond to each of the following volumes: $113 \mathrm{~mL}, 142, \mathrm{~mL}, 155 \mathrm{~mL}$, 127 mL .

Answers: 1) 45 ml	2) 7.5 liters	3) 285 K or $12{ }^{\circ} \mathrm{C}$	4) 73 L
6) 0.30 ml	500 ml	baking soda $(\mathrm{NaHCO} 3)$	7) 125 ml
8) 238 K or $-35.3^{\circ} \mathrm{C} ; 299 \mathrm{Kl}$ or $25.7^{\circ} \mathrm{C}$; 326 K or $53.1^{\circ} \mathrm{C}$; 267 K or $-5.83^{\circ} \mathrm{C}$			

